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Abstract. The existence of unitary representations for the special Conformal Group,
is investigated for free fields in any dimension, and the connection between the correct
transformation properties of the fields and weak conformal invariance pointed out.

I. Introduction

The use of conformal symmetry in quantum field theory has been
advocated a decade ago by Wess [1] and Kastrup [2-4]. The renewed
interest in this topic is closely connected to Wilson's [5] ideas on small
distance behaviour of field operators and dynamical or anomalous
dimensionality of fields. Moreover the Migdal-Polyakov construction
[6—11] of conformal invariant quantum field theories offers an interesting
alternative to canonical perturbation theory. It is hoped that these
approaches reproduce correctly the behaviour of strong interacting
systems in a particular class of high energy limits. This idea is supported
by the fact that the Gell-Mann-Low limit [12,13] of renormalizable
theories is conformal invariant [14], when the coupling constant equals
the Gell-Mann-Low eigenvalue.

On the other hand in "axiomatic" quantum field theory "proper
conformal invariance" meets a serious difficulty, which originates from
the fact, that conformal transformations can convert time - like into
space - like separations and vice versa. This may spoil the fundamental
concept of locality or Einstein causality. Thus it appears questionable that
conformal symmetry (appart from certain limiting cases) should hold
in general quantum field theory. Indeed Hortaςsu, Schroer and Seller
[15] have shown that due to the reverberation phenomenon of free fields
in odd space - time dimension (i.e. the commutator is not concentrated
on the light cone but spreads out into the time like region) the usual or
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canonical substitution rule,

x - b x z • (...)

(n = number of space dimensions, x2 = (x0)2 — x2) for conformal trans-
formations [1] does not lead to unitary operators in the corresponding
Hubert space. The same may happen for interacting zero mass fields in
even space-time dimension as it was demonstrated by the same authors
for the case of the Thirring model. Due to the absence of reverberations
this can however not happen for free fields in even space time dimension
[15,16].

Moreover these authors construct hermitean, symmetric global
charge operators from the conformal currents for all cases (with or
without reverberations) and claim that the charges fail to possess self-
adjoint extensions in the reverberating cases. However recently it has
been shown by one of us [17], that conserved currents always generate
global charge operators, which possess at least one self-adjoint extension
if there * exists an antiunitary (unitary) operator commuting (anti-
commuting) with the charges. Since for the conformal currents the PCT-
operator represents such an antiunitary operator, there always exist
at least one set of self-adjoint infinitesimal generators, i.e. at least one
unitary representation, for the special conformal transformation group.

In the present article we prove that for massless free field theories
in all space-time dimensions, i.e. independent of the reverberation
phenomenon, the generators of the special conformal transformations
are essentially self-adjoint operators. Hence they possess one and only
one self-adjoint extension.

That means in all these theories there exist a unique (up to a phase)
unitary representation of the special conformal group. What breaks down
due to the reverberation phenomenon in odd space-time dimensions
is not the conformal invariance but the usual canonical substitution
rule [1], (LI).

In order to save the structural properties of vacuum expectation
values induced by the (formal) canonical substitution rules also for the
case of reverberations Hortaςsu et al. [15] introduced the concept of
weak conformal invariance. We also show that this weak conformal in-
variance is a consequence of the above operator conformal invariance.

The present article is organized as follows: In section II we demon-
strate our ideas and results first for the (reverberating) case of one time
and one space dimension. In order to keep the calculations as simple
as possible we feel free to use improper wave functions. In Section III
we prove the existence of essentially self-adjoint generators of the
special conformal group in the Hubert space of massless free fields in all
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space dimensions n ^ 2. Section IV is devoted to derive the weak con-
formal invariance of Hortagsu et al. [15] from our conformal symmetry.
In Section V we conclude with some speculations and remarks.

II. The Case of 1 Space Dimension

We shall first investigate in this section the existence of a unitary
representation of the special conformal transformations,

μ _

X^XT 1 , ^ , 2 2 ( Π . 1 )

1 — bx + b xz

on c-number solutions (wave-functions) of the D'Alembert equation
in two dimensional space-time.

The transformation (II. 1) leads to the following formal substitution
rule for scalar wave functions:

/(*)->/*(*) = / ( * r ) . (Π.2)

By differentiating the transformed wave-function with respect to the
group parameters, and taking £>0, b1 and x° equal to zero, we obtain the
formal generators in x space,

f(x, 0) = Ko f(x, 0) = ίx2 -A- f(x, 0).

(Π.3)

f(x, 0) Ko f(x, 0) = ίx

In order to show that there is a unitary transformation whose generators
correspond to (II.3) we shall consider positive energy solutions of the
D'Alembert equation (analogous considerations will hold for negative
energy solutions)

*-|*l*°). (π.4)
j \~5 ' - / Π T Γ W 2 J 9IIH

The fik) endowed with the scalar product

, ,. , , dk
(Π 5)

define the Hilbert-space of positive energy solutions. From (Π.3,4) we
get the generators in momentum space

(II.6)

Kof(k)=-\k\-^Γf(k).
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Ko and Kx are from (II.6), unbounded operators, densely defined on the
domain of functions of Schwartz class, which vanish with their first two
derivatives at the origin.

They are furthermore symmetric on this domain and satisfy there
[ X 0 , K 1 ] = 0 . It will follow they are really self-adjoint commuting
operators.

For this purpose we want to find a complete set of simultaneous
(improper) eigenfunctions.

Kιfrλf} (π7)

The differential equations (II.7) are easily solved in terms of Bessel
functions leading to a unique set of solutions which are square integrable
at the origin.

fλ(k) = (kγ>2J1(2(-λkγ'2)Θ(k) if λ<0
„ (11.o)

fλ(h) = (-k)112 J^li-λkΫ^Θi-k) if λ>0

β=\λ\.

The completness of this eigenfunctions is reduced to the well known
completness of Bessel functions. The self-adjointness of the operators
Ko, K1 is also apparent from the inexistence of normalizable solutions
of the differential equations with λ,β=±i.

We can therefore build unitary operators by exponentiating Ko

and K1 with

(Π.9)

What remains to be seen is the action of this unitary representation of
the special conformal group on the wave functions in x space and how
is it related to the formal substitution rule (II.2).

For this purpose it is convenient to have the eigenfunctions (II.8) in
x space.

From the first equation of (II.7) one gets

^ ^ (11.10)

with c a constant to be determined. Fourier transforming (11.10) we
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obtain the eigenvalue equation in x space

λfλ(x) = ix2-^fλ{x) + yϊπc (11.11)

with the solution (properly normalized)

h(x)= -γ^ ψ-)fϊπ^ . (11.12)

From (II.8) we see that \k\~1fλ does not have a δ singularity at the
origin and therefore fλ(x) ̂ . ^ O . This fixes our constant c, and gives,

(11.13)/A(x)=
|/2π

Notice that since cφO the correct x space eigenvalue equation (11.11)
does not coincide with the one that would formally follow from the
formal generators (II.3), differing from it by the inhomogeneous term
that takes into account the proper boundary condition for k = 0 or
|x|-»oo.

From(IL9,13)

-fλ — . (11.14)

Expanding

f(x) = f ^ T T - fl(2)/2(x) (11.15)

we get

(11.16)

which is the correct transformation of the wave function for x° = 0,
differing from the formal substitution rule (I.I) by an additional term.
To get the transformation of the wave function for arbitrary times notice
that from (II.4 and II.8),

for 2 > 0 ( ' }

and therefore, straightforward calculation shows,

ibxKaxQ)f ( γ ΎO\_p-iHxp\f ( X

Jλ(x9x)-e γλ \jj^
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Again using expansion (11.15) for arbitrary times

(,»»*<*>>f{χ, χ°) = f(χτ,x°)-fϋ-,0\. (11.19)

Similarly,

= fx
x b0x ) _ _ _

and in general for arbitrary times,

-ib0K0(x°) f ( 0\ _ f / 0\ r f\ x I
e J λ\χi x ) — J x\xττ xτ)~Jλ\ u> IΓ~]

from what follows

Composing (11.19) with (11.22) we get the general transformation of the
wave function under the special conformal group,

. (Π.23)

The discussion of the negative energy solutions follows exactly the
same steps leading to a transformation law equal to (11.23).

It is the presence of the additional term in the correct transformation
law for the wave-function, that allows a unitary representation of the
special conformal group, without any conflict with causality, despite
the fact that in two dimensional space-time, we have propagation inside
the light-cone (reverberation) [15].

We proceed now to a discussion of the quantized field. In two dimen-
sional space-time the field is an operator valued distribution with
testfunction out of Schwartz class [18] with the extra proviso, necessary
to avoid infrared difficulties,

$ 0. (11.24)

We can formally expand the field in eigenfunctions of Kl9

Φ(x) = ί -^ {aλfλ(x) + affjx)} (11.25)

(with aλ annihilation and af creation operators), whose proper meaning
is obtained by smearing both sides of (11.24) with the appropriate test-
function. From (11.24) the action of the conformal transformation on the



Conformal Invariance 325

field φ(x) is reduced to its action on the wave-functions fλ{x). Therefore
we formally get, with KO,KX the conformal generators in Fock-space

eib*φ(x)e-ib*

= ί - ^ {aλ(e-iKbfλ(x)) + af(e-iKbfx(x))*} (11.26)

= Φ(*τ)-φ[--γ)-

By smearing both sides of (11.25) with a test function g(x) we get the
correct transformation law,

ib* = φ(gτ) (11.27)

with

gτ(x) = (1 + 2bx + b2x2Γ2g [ι + 2 h x + b2χ2) • 01.28)

Eq. (11.27) no longer contains the additional term of (11.26) which dis-
appeared after integration with the test function. However it would be
erroneous to take (11.27) as fully justifying the formal substitution rule
(I.I) for the field. This is realized by considering for instance the densely
defined form {Ψγ, φ(x) ψ2) which transforms exactly as the wave function

{e-ibRΨί,φ(x)e-'ibRΨ2)

i t h\ \

(11.29)

That the substitution rule (I.I) should not be valid for the fields defined
as forms, is of course a necessity in order that the conformal transforma-
tions do not violate causality, since the formal substitution rule maps
space-like separations into time-like ones, which is of course incompatible
with the fact that the form

{Ψ1, \_φ(x\ φ{y)~] Ψ2) ~ ε(x° - y°) Θ((x - y)2)

does not vanish inside the light cone.

III. Essentially Self-Adjoint Generators of the Conformal Group

For the construction of essentially self-adjoint generators of the
special conformal group, we exploit the fact that any special conformal
transformation

K(b) x: - - — -2—2- (III. 1)
w l-2bx + b2x2 v ;
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may be written as a product

K(b) = RT(b)R (III.2)

of a translation

T(b)x:=x + b (1113)

and inversions

This idea was first applied by Kastrup and Mayer [16] in four dimensional
space-time. We generalize it by different methods to arbitrary space
dimensions n ̂  2.

Our first task is to construct a self-adjoint unitary representation
U(R) of the inversion in the Hubert space L2(dnμ(p)); i.e. the Hubert
space of all complex functions /(p); {p = (p\ ...,/Z1),n> 1} square
integrable with respect to the measure dn μ(p) = (2\p\)~1 dnp with

/ n \ l/2

| p | := Σ (pf)2 The scalar product in L2(dnμ(p)) is defined by:
\i = 1 /

(f9g):=ίdnμ(p)7ΪP)g(p)' (ΠL5)

In general Π(dnv(p)) denotes the usual normed ZΓ-space with respect
to the measure dnv(p). The norm is given by:

] 1 / r

 ( I Π 6 )

In order to catch an idea about the structure of U(R) we first construct
by formal manipulations a sesquilinear form R(g,f) in L2(dnμ(p)). In the
second step we rigorously show, that R(g,f) defines a self-adjoint unitary
operator U{R) in L2(dnμ{p)) for all n > 1.

The Fourier transform

(III.7)

is obviously a solution of the DΆlembert equation. Then the function

f(x):= / 2~ satisfies the differential equation
\ x

-1 /(x) = 0,
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and finally the function

is a solution of the equation

If f(x) respectively f(p) is smooth enough, so that fR(x) is again a
solution of the D'Alembert equation, then the inner product

f { )

is time independent and may be calculated at time x° = 0. By means of
Eq. (III.8) we obtain:

n - l

If the integrals on the right hand side exist for all g, f from some linear
set 3$ Q l}{dn μ(p)\ then (III.9) obviously defines a sesquilinear form with
domain J*. Moreover R(g,f) is symmetric on $

This follows immediately by means of the change of the integration
variables

x->z=Ar; dnx = (z2yndnz. (III.ll)
x

We want to show next, that R(g, f) exists for all g, f from the dense domain

IT:={f(p)eL2(dnμ(p))nL1(dnμ(p)):

(P2Ϊ ~v-^ fip) e ϋ (dnp) (111.12)

Π (W?1

for all 0 ̂  r ̂  n, 0 ̂  k = ]•]
i = l
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and is bounded by:

(111.13)

Here Ωn denotes the surface of the n-dimensional unit-sphere and Δ{n)

the rc-dimensional Laplace-operator.
In order to assert this, consider the integral

dn

\q\ f(q)

(*22 P ~
« + l

ii ii I ί* o

+ f <Fx(x2)
n+1

2\ 2~

d»x(x2)

w+1

2\ 2 \d?qf(q)e^

By means of the variable transformation (III. 11) we find

f := J d"x(x2) Mi dnqf(q)e

= J rf"z(z2) 2 |J ί ί / tgJ jWβ 1 1 * 1

Hence

By exactly the same arguments it follows after the change (III. 11) of the
integration variables:

Π: =

n-ί

jn^(v2\ 2$dnx(x2)

^dnμ(q)f{q)ei^

ίiΩn\\ f \\ϊ{\\g\\\

(III. 15)

However the last two inequalities together deliver the bound (III. 13).
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By now we have established the existence of a symmetric sesquilinear
form with dense domain Dn in L2(dnμ{p)). This form R(g,f) defines an
operator U(R) if and only if it is bounded in the L2 (dnμ(p))-norm in g.
The key for the derivation of this property is the following lemma:

Lemma 1. For all f(p, q\ which together with their first two partial
derivatives are from

L^dnμ(p))(g)L2(dnμ(q))nLι{dnμ(p))®Lι(dnμ(q))nLι(dnp®dnq)

we have:

ί - ^ T - f *Ί*P) d"μ(Ί) f(P, «) (|p| + 4 ) e-i{"-&
(x2)~ \ X I

= 2 J - ^ J d"μ(p) d"μ(q) f(p, q) 4 " f'^"^ (111.16)
(χ2) 2 x

(χ2) 2

Proof. From the derivation of the bound (III. 13) we know that all
integrals are finite. Then by means of the substitutions

~

we obtain at once:

•{f(p,q)-f(q,p)) = o-

Hence we may restrict ourselves to symmetric functions f(p, q) = f(q, p).
However for them it follows at once by the same substitution:

ί ^ r ί d"μ(p) d 'μ(q) f(p, q) \p\ f ^ ' ^
2Γ^

This proves Lemma 1.
The majorisation (III. 14) together with Lemma I allows the sesqui-

linear form R(g,f) to be rewritten as the following L2(d"μ(p))-scalar

23 Commun math. Phys., Vol. 29
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2^rjd
nμ(p)g{p)jdnx{.x2j~n+2ί

•\d«qf(q)e

2
-\d"μ{p)g(p)\dnx{x2

(111.17)

(2π)

•\dnqj\q)e~i{^~qx).

Now in order that R(g,f) is bounded in g by the L2(ίf μ(p))-norm for
all g,feD" it is sufficient to show, that

(111.18)

is from L2(d"μ(p)) for all /efl", since the desired boundedness is then
obtained from Schwartz' inequality.

For all f(q) e D" the Fourier transforms

f(x) = (2π) 2\d\

are from L2(d"x) and satisfy the bounds

(111.19)

π (111.20)

r =

for all 0 ̂  r, k ̂  w.

This implies that the functions (x2) 2 f\—γ\ together with their
\x I

first n derivatives are from L2(dnx)nL1(dnx). Therefore the functions

n-ί

(2π)"/ :

2 f(x)e~
(111.21)

n+1

•' /ι^-i'-»
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and (pι)r(U(R) f)(p), {̂  = 0,..., n; ί= 1,..., n) are bounded continuous
functions from L2(dnp). However this means that (U(R)f)(p) is from
L2{dnμ{p))nL1(dnμ{p))nL1(dnp). Thus by Schwartz inequality we get
for all gJsDn\

\R(gJ')\ύ\\g\\μ

2\\υ(R)f\Y2. (III.22)

This bound asserts that Eq. (III. 18) defines a linear operator U(R) in
L2(dnμ(p)) with dense domain Dn. Moreover U(R) is symmetric on Dn

since R(g,f) is symmetric.

In the next step we show:

Theorem 1. The symmetric operator

(111.23)

with fe Dn has a unique self-adjoint, unitary extension to the whole Hilbert
space L2{dnμ{p)\

Proof. It is sufficient to show, that U(R) is isometric (and thus
bounded) on Dπ, i.e.

"\\μ

2=\\f\\μ

2 for all feD\

n+ 1
i ,,/,,2\ 2

2\ 2i

-eip*\dnqe y2 f (q) j d"x(x2)

. kx

-e-ipx\dnke^"/(ft).

Since the y- and x-integrals converge absolutely we may interchange
them with the p-integration. This leads to the integral [18].

\dnp\p\-ιe-i^-y) = \2n-ιπnl2Γ\--^y{\l2y1\l(x-y)2^ 2

Applying in the resulting expression again the variable transformation

23*
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(III. 11) we end up with:

• J dnqe-iqx fϊq) J dnkeίkx f(k)

This proves Theorem 1.
In the final step we construct by means of the unitary operators U(R)

essentially self-adjoint generators Kμ, {μ = 0,1, ...,nj of the special
conformal group.

Let Δn(P) be the dense domain of all functions from L2(dnμ(p))
vanishing at infinity faster than any inverse polynomial in pk.

Δn(P) = {feL2(dnμ(p)):\(p2γf(p)\^cr(f)<oo; r = 0,l,2,...}. (ΠI.24)

Δn(P) is contained in the domain of the essentially self-adjoint generators
Pμ {μ = 0,..., n} of the translation group:

p°:=\p\ (111.25)

Moreover Δn(P) is stable under the application of Pμ:

PμΔn(P)QΔn(P). (111.26)

Let Δn(R) be the image of Δn(P) under the unitary operators U(R):

Δn(R):= U{R)Δn(P). (111.27)

By the symmetry of U(R) it follows

Δn{P)=U(R)Δn(R). (111.28)

Lemma 2. zP(K) and Γ:= Δn{P)nΔn{R) are both dense in L2{dnμ(p))
and Γn is stable under U(R):

U(R)ΓnQΓn. (III.29)

Proof. First observe that the Schwartz space £fn of strongly decreasing
c00-functions [18] is dense in L2(dnμ(p)) and obviously contained iri
Δn(P). It remains to be shown that ίfn is cobtained in Δn(R). In view of
(111.28) it suffices to prove that

(U(R)f) (p) = (2πpj d-xix2)'^/^

i n + 1

= wf^d"x[χ2) 2 e ιpx
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vanishes faster than any inverse polynomial at infinity for all f(q) e Sfn.
This however follows by repeated applications of the following three
relations and the fact that the Fourier transformation maps Sfn onto £fn.

d

dqk

(111.30)

2/

(2πf

Finally the relation (111.29) is a trivial consequence of the definition of the
domains An(P)9Δ

n(R) and Γn

This proves Lemma 2.
On the dense domain Δn(K) we define in accordance with the Eq. (III.2)

the operators Kμ, {μ = 0,1,.. ., n} by:

Kμ:= U(R)PμU{R). (111.31)

Since Pμ is essentially self-adjoint and U(R) unitary and self-adjoint also Kμ

is essentially self-adjoint. Moreover Pμ and Kμ have the same spectrum.
Finally from the definition of Δn(R) it obviously follows:

KμΔn{R)QΔn{R). (111.32)

In a last step we have to establish, that the operators Kμ above are
identical with the generators Kμ of the special conformal group defined by:

l-2bx + b2x
2x2 (ΠI.33)
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or what is the same:

( Π L 3 4 )

In order to see this, we first translate Kμ to an operation in L2(d"μ(pj)
by means of the Fourier transform (III.7). Since it is easily seen, that
Πwf(x) = 0 implies DM(Kμf) (x) = 0 we may calculate the action of Kμ

in L2(d"μ(p)) from:

$
(g,K»f) = i j d"xg(χ) (#•/)(*)

(111.35)

2πμ-\Λqx[(« - 1) x" - 2i x" xvqv + i x2 <f\ έ

By straightforward calculations we find for all / from the dense subset
£fκ C L2(d"μ(p)) and all g e L2(d"μ(p))

(g,K°f)= -

(ΠI.36)

On the other hand we obtain for all g from the dense subset D" and all
feS?n by means of the symmetry properties of U(R)

= (U(R)g,PμU(R)f)

(ΠI.37)

P° = \P\.

Since the x- and .y-integrations converge absolutely and give rise to
functions from L2\dnμ{p))nl}{dnμ(p))nl}(dnp) for geDn and feSfn,
we may interchange the p-integration with the x- and y-integrals.
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Caseί. K°: Applying the Eq. (111.30) after the p-integration has
been performed we get:

(2π)w J (x2)n J *

Thus

(g, K°f) = J dnμ(k)tfk){-\k\ Δ^ f(k)). (111.38)

Case 2. Kr: We first rewrite the g-integral by means of Lemma 1 and
then proceed in the same way as in the case of K°:

J d 'μiq)^*^ gjq)pk\p\ \ d '

d»kf(k)

n+ΐ)xr-ikr

 Ύ

From this it follows by the familiar change of integration variables (III. 11):

(g,K'f)=ld"μ(k)g(k)

(111.39)

Since Dn is dense in L2(dnμ(ρ)) we obtain the desired identity from a
comparison of (111.36) with (IIL38) and (111.39):

(K»f)(p) = (frf)(p) for all fe£fn. (111.40)

Once we have established the existence of essentially self-adjoint
generators Kμ for the special conformal group, we obtain its unitary
representation U(b) by exponentiation and the fact that Kμ and Pμ

have the same spectrum contained in the closed forward cone

K:={pμ:p2^0, p°^0} (111.41)

eib»κμ:= j eίb^dEk(p). (111.42)
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Moreover in order to keep the considerations of the next section as
elementary as possible, we may feel free to take the limits to improper
functions. However every step can easily be rewritten in terms of wave-
packets (eL2(dnμ(p))\

For later use we want to derive the (improper) eigenfunctions of Kμ

in jc-space (at time x° = 0). They are most easily obtained from (111.31)
and a complete set of eigenfunctions fp(x) of Pμ\

p ) \ f , q )
λ^p (111.43)

fλeL2(dnμ(q)); fp(q) = 2\p\δ(q-p).

Eq. (111.31) implies:

Kμ(U{KJj)p (x) = pP(U(R)f)P (x) (ΠI.44)

All we have to do is to rewrite Eq. (111.23) by means of Lemma 1 and
take the Fourier transform. This leads to:

(x2) 2 μnμ(q)e*2 fλ(q).

Hence we get in the limit for the complete set of eigenfunctions of Kμ:

(U{R)f)p (x) = Km (U(K)f)λ (x)

^ \ ± _Jί-L px (ΠI.45)

= ( 2 π ) 2 ( x 2 ) 2 e*2

IV. Conformal Transformations for n > 1 Space Dimensions

From the previous sections we have seen that the conformal
generators are self-adjoint for any space dimension, the one dimensional
case having been treated separately in Section II, and the case of n > 1
space dimensions in Section III.

From (III.45) the (improper) eigenfunctions of the conformal
generators in x space, for x° = 0, are (n> 1, positive energy solutions)

fλ(x) = (2π) 2(x2) 2 e χ2 (IV. i

with

K0fλ(x) = ]/λ2fλ(x).

Notice that the fλ are solutions of the formal eigenvalue equations
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in x space

the absence of a inhomogeneous term analogous to (11.11), being due
to the fact, for n>\ there are normalizable functions which do not
vanish for h = 0. So from

we conclude

without a <5(fc)-term analogous to (11.10).
From (IV. 1,2) we conclude

b2x2) 2 fλ(xτ)

and expanding

(IV. 5)

we obtain the transformation law of an arbitrary wave function for x° — 0:

eibKf(x, 0) = σ(x)~~f(xT9 0) (IV.6)

with

For time zero the transformation law (IV.6) coincides with the formal
substitution rule (LI). To obtain the action of the finite conformal trans-
formations for arbitrary times we have to use the time evolution operator

1 -n

2 f{xτ, 0)/ .

The positive energy time evolution kernel e~ιHx° is given by

(e-iHx°\ _ * Γ Jn K p-i\k\x° pik{x-y)

= cnx°l(x-y)2-(x°-iε)2l
n + 1
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with

Ωn = surface of unit sphere in n dimensions.
From (IV.6, 8,9) we find

• \dny[_{x-y)2-{χ°-iέ)2~] 2 σ(y) 2 f(yτ,O).

Introducing yτ as new integration variable, with the Jacobian

—l—=σ(y)~n (IV. 11)
δ{y)

and using the identity

(X - yf = φ) σ{y) (χτ - yτf (IV.12)

we arrive at
n+l

eibK{χ0)f(x, x°) = cnx°τ\ dnyτ σ(x) σ(y) 2

n+ 1_ / J Y H o\

If it were not for the ε prescription in (IV. 13) one could pull out the
factors σ(x)σ(y) from the root and therefore justify the substitution
rule (I.I). This can indeed be done for odd space dimensions when the
denominator in (IV. 13) has integral powers in agreement with the
results of [15]. For even space dimensions however, although we have
a unitary representation of the space-part of the special conformal trans-
formations, as seen from (IV.6), the substitution rule (I.I), is not valid for
times different from zero. On the other hand, the positive energy solutions
of the D'Alembert equation, can be analytically continued to negative
imaginary values of the time variable. We have therefore, for x° = — z"x4,

pibK(-ix4)
e J \χ, —1X4.)— —cnιx^τ

n+l

Ίdnyτσ(x)σ(y) 2 f(yτ,0) (IV.14)

)2 f' ίΦ) σ(y) {(xτ - yτ)
2 + (x4Γ)2}f ~ .

In (IV. 14) all three factors under the root are positive and therefore can
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be separately pulled-out leading to

2 f(xτ,-ix4T) (IV.15)

which is the formal rule (I.I) for negative imaginary times.
The real time analogue of (IV. 15) obtained by analytic continuation

from (IV. 15) requires that the time variable in σ(x) be given a small
negative imaginary part. This will imply, since the negative energy
solutions require the opposite ε prescription a non-local transformation
law for the quantized field in even space dimensions, i.e. one which can
not be represented by a change of coordinates, hence no conflict with
causality.

Only in the non-reverberating situation will (I.I) give the correct
transformation of the field.

In order to obtain the action of the finite Ko transformations, let us
compute first the time evolved (for negative imaginary times) of the
eigenfunctions fλ(x)

fλ(x, - ix4) = cn(2π)~* ( - ix4) j dTy(y2)~
(IV16)

v x
Making the variable transformation y' = ^, x' = =- we easily

y x
arrive at

2 (

x2 + χl

(IV.17)

From

e-ib°κ°t-ix»£(x, -ίx4) = e-H*<-ίb°κ°fλ(x,0)

and since Ko is a positive definite operator, which allows to extend the
unitary operator to a bounded one for negative imaginary values of the
parameter bo= —ίb4, b 4 > 0 , we get using (IV.17,18)

e-b4Koi-iχA)fi{Xf -iχj = σ ( x ) f λ ( x τ , - i x 4 T )

and therefore for an arbitrary wave function,

Γ s - fx 4 Γ ) (IV.20)



340 J A. Swieca and A. H. Vδlkel:

which is again the formal rule (I.I), for negative imaginary times and
values of the b0 group parameter. Again for real values of the time and
the group parameter the analogue of (IV.20) requires that both the time
and b0 in σ(x) be given a small negative imaginary part.

Composing (IV. 17) with (IV.20) we get the transformation law

e-ibKiχ0)f(x) = σ(x) 2 f(xτ)
(IV.21)

bo= —ib4, x° = —ίx
4 .

One has therefore justified the substitution rule (I.I) for the analytically
continued special conformal transformations acting on analytically
continued solutions of the D'Alembert equation for any space dimension.
This is closely related to the concept of weak conformal invariance of
Hortaςsu, Seiler and Schroer Q15].

Similar considerations hold for the negative energy solutions, with
the important difference that analytic continuations have to be made to
positive imaginary values of both the time and the group parameter b0.
This means that in the reverberating case we do not have a simple substitu-
tion rule valid for a general solution containing both positive and
negative energy parts.

The transformation properties of the quantized field follow imme-

diately from (IV.21) by means of the expansion

in terms of annihilation and creation operators. As in the one dimensional
example the action of the conformal group on the field φ is reduced to its
action on the wave functions fλ. As for wave functions, the annihilation
part of the field can be continued from a distribution valued operator
to an operator for negative imaginary times and the (Ko) part of the
conformal group analytically continued to negative imaginary values of
the group parameter. Therefore one finally obtains,

1 -n
f~2~'Λ(-)(φ{~\xτ) (IV.23)

bo= -ib4, x° = ~ix4

and the conjugate expression for φi+)(x). Eq. (IV.23) provides (for free
fields) the operator realization of weak conformal invariance [15], which
now follows from the existence of a unitary representation of the special
conformal group.
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V. Conclusion

The fact that for free fields weak conformal invariance is a consequence
of a unitary representation of the special conformal group, coupled with
the existence of at least one self-adjoint extension of the conformal
generators, makes one suspect, that weak conformal invariance would
always be a manifestation of a unitary representation of the special
conformal group.

In the interacting case, explicit transformation properties for the
field, might be very hard to get, due to the impossibility of a covariant
splitting in positive and negative energy parts and merit a separate
investigation.

We conclude with a few remarks on the following problem: Do the
separate unitary operators of the Poincare, dilatation and special con-
formal group generate a representation of the whole conformal group?

For n — 1, it is clear from (11.27) that we have a unitary representation
of the whole group.

For n > 1, we get from (IV.23),

eikbφ{O)e~iKb = φ(O). (V.I)

On the other hand if we had a unitary representation of the whole
conformal group then,

where we have used the canonical decomposition of any group element
in terms of translations (T), special conformal transformations (£/), special
Lorentz transformations (Λ) and dilatations (V), [15]. In (V.2), it would
follow from the existence of a representation,

ry _ JPaτ

(V3)
γ^ei(log\σ(a)\)D v ' ;

and U, A act trivially on the field at the origin.
With (V.2, 3) we would find,

= (|σ(x)|) 2 φ(xτ).

The transformation law (V.4) is only compatible with the correct trans-
formation law of the field under special conformal transformations if
n = 4Z+l. In all other cases we probably get representations of the
covering of the conformal group. Those questions will be dealt with in
more detail in a future publication.
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